
ECE 574 Mini-Project 4 Arpad Voros

1 Introduction

Taint-analysis of software is the process potential user inputs are evaluated to see if they can
manipulate the programs execution in a malicious intent. With the rise of mobile applications
the past decade, many third-party apps can be approved for distribution on Google’s Play store
or Apple’s App store despite there being fundamental security flaws in the software. In this
project, there will be taint-analysis done on roughly 25 Android applications using Argus-SAF
(previously known as and referred hereon as Amandroid) with further investigation into why
and how these flaws occur.

The appset is downloaded from a local repository on Google Drive, using mp4-appset-A,
since the first hexadecimal character of the SHA256 hash of my last name (lowercase) is a.

>>echo "voros" | openssl sha256

(stdin)= aac25310f5066dd495e440543ded228ffdd8cec5e632d04b55a6af78e366524d

2 High Level Statistics

The applications within the appset are listed in the following table. Running a simple bash
script calling Amandroid on each .apk file results in 15 apps producing outputs. The remaining
10 are excluded from further analysis, due to failure of analysis or output production.

Name (full) Taint-Analysis Successful

com.atpc-347 Yes
com.auction.resi.buyer-54 -

com.brainpop.brainpopjuniorandroid-30 Yes
com.castify-364 -

com.cootek.smartinputv5.skin.keyboard theme water-588 -
com.freevpnintouch-40801 Yes

com.ilikeyou-787 Yes
com.joom-3153925 Yes

com.lbrc.PeriodCalendar-61100 Yes
com.northpark.beautycamera-77 Yes

com.nosixfive.verto-1050019 Yes
com.peoplemedia.blackpeoplemeet-311 Yes

com.scannerradio-6749 -
com.thetransitapp.droid-3013721 -

com.tql.carrierdashboard-135 Yes
com.transloc.android.rider-44 Yes

com.wildec.meet24-165 -
com.yazio.android-41104110 -

gov.irs-63 Yes
navigation.location.maps.finder.directions.gps.gpsroutefinder-19 -

pedometer.steptracker.calorieburner.stepcounter-48 Yes
photocollage.photoeditor.photocollageeditor-11 -

pl.trpaslik.babynoise-172 Yes
tv.telepathic.hooked-105 -

twitch.angelandroidapps.tracerlightbox-27001 Yes

Table 1: Which apps within the appset produced output from Amandroid

1

ECE 574 Mini-Project 4 Arpad Voros

The machine I am currently on is a laptop with limited RAM and computing power, therefore
the taint-analysis would have taken many hours and potentially days. Therefore, Amandroid
taint-analysis was run externally on NCSUs remote EOS servers to decrease run-time. The
binaries for the latest snapshot of Amandroid alongside the .apk files within appset-A were
uploaded to a Github repository and cloned onto my local directory in AFS. A bash script
entered the appset folder and looped through all the .apk files and ran the following command
for each file

java -Xmx4g -jar argus-saf-3.2.1-SNAPSHOT-assembly.jar t -mo DATA_LEAKAGE -a

COMPONENT_BASED -o app_results $app_folder/$file

where the Xmx4g refers to allocating 4GB of RAM toward this process (8GB would result in
EOS killing the command. Locally, only 1GB was possible), .jar file is the Amandroid binary, t
refers to taint-analysis, DATA_LEAKAGE further specifies type of taint-analysis, COMPONENT_BASED
reduces RAM requirements and run-time due to how it handles inter-component communica-
tion (ICC), app_results refers to name of the output folder, and $app_folder/$file refer to
the bash scripts environment variables to reference the source .apk file.

The resulting AppData.txt output files (for all Android applications that successfully performed
taint-analysis) were compiled into a folder for further parsing and analysis. The points of inter-
est for compiling statistics regarding security flaws come from taint paths, where transfer nodes
of potentially tainted data (source and sink) are determined by Amandroid. The tainted data
can be malicious in numerous ways. Since analysis was done with the DATA_LEAKAGE run config-
uration, all the taint paths within our output show potential sources of data leakage and thus in-
formation theft. Other possible run configurations for Amandroid include: INTENT_INJECTION,
PASSWORD_TRACKING, OAUTH_TOKEN_TRACKING, and COMMUNICATION_LEAKAGE.

Without any prior knowledge of Amandroid, it was assumed that some of the DATA_LEAKAGE
taint paths could potentially be used maliciously to fit other categories, depending on the
sink of the tainted data. For example, if the sink is Landroid/util/Log with datatype
Ljava/lang/String, then it is evident this can only contribute to data leakage. However,
if the sink is Landroid/os/Handler with the same String datatype, then this could contribute
to INTENT_INJECTION as well. Fortunately, it was discovered that Amandroid’s discovered taint
paths are mutually exclusive with respect to the analysis configuration, so all taint paths output
by DATA_LEAKAGE are for data leakage only.

Sink Routine of Interest Description

Landroid/util/Log Log, mainly used for debugging purposes
Landroid/os/Handler OS handler, typically error messages
Landroid/app/Activity Manages activity, input of Intent

Landroid/content/SharedPreferences$Editor? Locally saved preferences w.r.t. the app
Landroid/content/Context Interface to global environment

Landroid/content/ContextWrapper Interface to global environment
Ljava/io/Writer Write to file

Ljava/io/FileOutputStream Write to file
Ljava/net/URL Net request

Ljava/net/URLConnection Net connection
Ljava/net/HttpURLConnection? Net connection

Table 2: Tainted data sink routines: descriptions

2

ECE 574 Mini-Project 4 Arpad Voros

Figure 1: Tainted data sink routines: count per application

3

ECE 574 Mini-Project 4 Arpad Voros

As seen in Figure 1, the 15 Android apps which were able to be analyzed gave information
regarding routines that are able to accept potentially tainted data. The full data lists can be
seen in the Appendix, since the figures might be difficult to read. The most common routine
was Landroid/util/Log. Above in Table 2 is a list of other common/notable routines with a
brief description of each.

Below in Table 3, a summary of sink routines can be seen. The higher the number in the two
leftmost columns, the more potential data leakage and security flaws. The total number of sinks
column is simply a sum of all instances from the Amandroid analysis of all sink routines (also
seen as a sum of all counts seen in the histograms of Figure 1). The leftmost column indicates
the number of identified taint paths. (Note: I am unsure if some of the Amandroid outputs
were not complete, but some of the applications showed 0 taint paths. Which is unusual, since
how can there be a source and a sink of tainted data but no path connecting them? However, I
could simply be misinterpreting what this means.) Lastly, network sinks are ones of high interest
so they have their own column.

Name (short) # of Net Sinks Total # of Sinks Identified # of Paths

atpc 0 24 0
brainpop 0 160 0

freevpnintouch 0 213 8
ilikeyou 0 120 2

joom 5 16 2
PeriodCalendar 6 116 3
beautycamera 0 43 8

verto 0 118 54
blackpeoplemeet 0 136 120
carrierdashboard 8 58 0

transloc rider 0 277 0
irs 0 41 10

stepcounter 0 213 6
babynoise 0 90 17

tracerlightbox 0 34 0

Table 3: Sink routine counts per Android application

3 Determining Privacy Violations

Privacy violations can be determined by further interpreting Table 2 and assuming the worst-
case scenario.

1. Landroid/util/Log: The log is usually only used by developers during development for
debugging purposes. This data flow can potentially display vital information with respect
to program variables for an adversary to gain information about the program.

For example, a developer could have accidentally kept displaying private information
from the network, local storage, etc., in the logger which can now be intercepted by the
adversary.

2. Landroid/os/Handler: All data paths and instances of DATA_LEAKAGE taint-analysis,
this OS sink had an OS message as the source. Meaning, this was displaying errors when

4

ECE 574 Mini-Project 4 Arpad Voros

encountered. Errors can hold vital information with respect to how a program functions,
which can be beneficial to an adversary.

For example, an adversary can find weak points in the software by taking advantage what
they have learned from these OS handler messages.

3. Landroid/app/*: Tainted data serving as input parameters to Landroid/app/* can be
dangerous because it can affect the overarching run-time of the application. I.e., activities
and fragments can be created, destroyed, started, stopped, resumed, or paused in an
unorthodox manner.

For example, instead of calling a ’microphone’ activity to be destroyed, it can remain
functioning even when the application does not intend it to.

4. Landroid/content/*: Somewhat similar to the OS handler above, Landroid/content/*
handles data flow between components (ICC) of global environment variables (content).

For example, after importing data (taking a picture, recording audio, inputting private
information, etc.) this can be stored in a global environment to be potentially used again
by another component. An adversary can now intercept or manipulate the data along
these data paths.

5. Ljava/io/*: Tainted data potentially affecting IO data flow is dangerous. Manipulated
data directly changes input or output file-streams which an adversary can take advantage
of in many ways.

For example, an adversary can utilize this point in the data flow to intercept private
stored information, such as API keys, passwords, etc.

6. Ljava/net/*: Tainted data potentially affecting network sinks is especially dangerous,
since an adversary can pull private information from responses or affect the outgoing
request in a way to act maliciously by posing as the client.

For example, after incoming data has already been decrypted OR before outgoing data
has been encrypted, an adversary can utilize this point in the data flow to intercept raw
messages.

There were only 3 applications of the 15 with affected network sinks (as seen from Table 3:
joom, PeriodCalendar, and carrierdashboard. A process that can be used to determine whether
any of these paths in taint-analysis w.r.t. network (and other) sinks are false positive would be
decompilation. The .apk files can be decompiled using different available Android decompiler
tools and the source code can be examined, so see exactly what is a true positive by Amandroid
and what is actually safe but reported as data leakage.

4 Appendix

Simple script used for parsing

import os

import re

import json

from collections import Counter

import matplotlib.pyplot as plt

flatten =lambda x: [i for row in x for i in row]

5

ECE 574 Mini-Project 4 Arpad Voros

loop through files in directory

foldername ="outputs"

fnames =os.listdir(foldername)

for fname in fnames:

read in file as string

fstr =open(foldername +"/" +fname).read()

app name

appname =re.findall(’(?<=Application Name:).+?(?=\n)’, fstr)[0]

print(appname)

all source/sink

unparsedss =re.findall(’(?: <Descriptors:)(.+?)_(.+): (.+?);(?:.+):\((.*?)\)(?:.+)(?=\n)’,

fstr)

parse sources

sources =[[ss[0], ss[2], ss[3]] for ss in unparsedss if ss[1] =="source"]

sidx =0;

for src in sources:

if ";" in src[2]:

datatypes =re.findall(’.*;’, src[2])[0].split(";")[:-1]

didx =0;

for dt in datatypes:

datatypes[didx] =re.findall(’(?:)L.*’, dt)[0]

didx +=1

sources[sidx][2] =datatypes

else:

sources[sidx][2] =["any"]

sidx +=1

parse sinks

sinks =[[ss[0], ss[2], ss[3]] for ss in unparsedss if ss[1] =="sink"]

sidx =0;

for snk in sinks:

if ";" in snk[2]:

datatypes =re.findall(’.*;’, snk[2])[0].split(";")[:-1]

didx =0;

for dt in datatypes:

datatypes[didx] =re.findall(’(?:)L.*’, dt)[0]

didx +=1

sinks[sidx][2] =datatypes

else:

sinks[sidx][2] =["any"]

sidx +=1

get source counts + uniques

src_type_counts =dict(Counter([src[0] for src in sources]))

src_type_unique =[x for x in src_type_counts]

src_func_counts =dict(Counter([src[1] for src in sources]))

src_func_unique =[x for x in src_func_counts]

src_dttp_counts =dict(Counter(flatten([src[2] for src in sources])))

src_dttp_unique =[x for x in src_dttp_counts]

get sink counts + uniques

snk_type_counts =dict(Counter([snk[0] for snk in sinks]))

snk_type_unique =[x for x in snk_type_counts]

snk_func_counts =dict(Counter([snk[1] for snk in sinks]))

snk_func_unique =[x for x in snk_func_counts]

snk_dttp_counts =dict(Counter(flatten([snk[2] for snk in sinks])))

snk_dttp_unique =[x for x in snk_dttp_counts]

6

ECE 574 Mini-Project 4 Arpad Voros

print(src_type_counts)

print(src_func_counts)

print(src_dttp_counts)

print()

print(snk_type_counts)

print(snk_func_counts)

print(snk_dttp_counts)

print()

print()

Taint-analysis data. Used in Figure 1 and all tables

com.atpc-347.apk

Source routines:

{’Landroid/content/Intent’: 2, ’Landroid/content/pm/PackageManager’: 1, ’Landroid/app/

PendingIntent’: 1}

Sink routines:

{’Landroid/util/Log’: 23, ’Landroid/content/Context’: 1}

com.brainpop.brainpopjuniorandroid-30.apk

Source routines:

{’Landroid/content/pm/PackageManager’: 1}

Sink routines:

{’Landroid/util/Log’: 150, ’Landroid/content/ContextWrapper’: 1, ’Landroid/content/

SharedPreferences$Editor?’: 8, ’Landroid/content/Context’: 1}

com.freevpnintouch-40801.apk

Source routines:

{’Landroid/content/Intent’: 11, ’Landroid/content/pm/PackageManager’: 3, ’Landroid/app/

PendingIntent’: 1, ’Lcom/zendesk/sdk/feedback/ui/ContactZendeskFragment’: 1, ’Lcom

/zendesk/sdk/requests/ViewRequestFragment’: 1}

Sink routines:

{’Landroid/util/Log’: 199, ’Landroid/content/SharedPreferences$Editor?’: 8, ’Landroid/

content/Context’: 1, ’Ljava/io/Writer’: 1, ’Landroid/app/Activity’: 4}

com.ilikeyou-787.apk

Source routines:

{’Landroid/content/Intent’: 62, ’Landroid/os/Handler’: 2, ’Lcz/ackee/androidskeleton/ui

/activity/base/BaseFragmentActivity’: 3, ’Landroid/app/PendingIntent’: 1, ’Lcz/

ackee/androidskeleton/ui/activity/MainDrawerActivity’: 4}

Sink routines:

{’Landroid/util/Log’: 94, ’Landroid/app/Activity’: 14, ’Landroid/content/

SharedPreferences$Editor?’: 10, ’Landroid/os/Handler’: 2}

com.joom-3153925.apk

Source routines:

{’Ljava/net/URLConnection’: 2, ’Landroid/content/Intent’: 6, ’Landroid/content/pm/

PackageManager’: 1}

Sink routines:

{’Ljava/net/URLConnection’: 4, ’Ljava/io/ByteArrayOutputStream’: 1, ’Landroid/content/

SharedPreferences$Editor?’: 4, ’Ljava/io/OutputStream’: 3, ’Landroid/app/Activity

’: 2, ’Ljava/net/URL’: 1, ’Ljava/io/Writer’: 1}

com.lbrc.PeriodCalendar-61100.apk

Source routines:

7

ECE 574 Mini-Project 4 Arpad Voros

{’Landroid/content/Intent’: 22, ’Landroid/os/Handler’: 2, ’Landroid/app/PendingIntent’:

5, ’Ljava/net/URLConnection’: 2}

Sink routines:

{’Landroid/util/Log’: 93, ’Landroid/content/SharedPreferences$Editor?’: 8, ’Ljava/net/

URL’: 4, ’Ljava/io/FileOutputStream’: 6, ’Landroid/content/Context’: 2, ’Ljava/net

/URLConnection’: 2, ’Landroid/os/Handler’: 1}

com.northpark.beautycamera-77.apk

Source routines:

{’Landroid/content/Intent’: 52, ’Lcom/northpark/beautycamera/AdActivity’: 4}

Sink routines:

{’Landroid/app/Activity’: 11, ’Landroid/content/SharedPreferences$Editor?’: 20, ’

Landroid/support/v4/app/FragmentActivity’: 8, ’Landroid/content/ContextWrapper’:

2, ’Landroid/util/Log’: 2}

com.nosixfive.verto-1050019.apk

Source routines:

{’Landroid/content/Intent’: 8, ’Lcom/google/example/games/basegameutils/

BaseGameActivity’: 2, ’Landroid/app/PendingIntent’: 1, ’Lcom/nosixfive/anative/

aNativeActivity’: 2}

Sink routines:

{’Landroid/util/Log’: 116, ’Landroid/content/SharedPreferences$Editor?’: 2}

com.peoplemedia.blackpeoplemeet-311.apk

Source routines:

{’Landroid/content/Intent’: 26, ’Lcom/pm/android/todays_matches/TodaysMatchesFragment’:

1, ’Lcom/pm/android/PeopleMediaActivity’: 5}

Sink routines:

{’Lcom/pm/android/PeopleMediaActivity’: 14, ’Landroid/util/Log’: 115, ’Landroid/content

/SharedPreferences$Editor?’: 6, ’Landroid/content/ContextWrapper’: 1}

com.tql.carrierdashboard-135.apk

Source routines:

{’Landroid/app/PendingIntent’: 5, ’Landroid/content/Intent’: 15, ’Landroid/content/pm/

PackageManager’: 1, ’Ljava/net/URLConnection’: 3}

Sink routines:

{’Landroid/util/Log’: 33, ’Ljava/net/URLConnection’: 6, ’Ljava/net/HttpURLConnection?’:

2, ’Landroid/app/Activity’: 3, ’Landroid/content/SharedPreferences$Editor?’: 10,

’Landroid/content/ContextWrapper’: 2, ’Ljava/io/Writer’: 1, ’Landroid/content/

Context’: 1}

com.transloc.android.rider-44.apk

Source routines:

{’Landroid/content/Intent’: 3, ’Landroid/app/PendingIntent’: 3, ’Landroid/content/pm/

PackageManager’: 1}

Sink routines:

{’Landroid/util/Log’: 249, ’Landroid/content/SharedPreferences$Editor?’: 4, ’Ljava/io/

Writer’: 14, ’Ljava/io/FileOutputStream’: 4, ’Landroid/content/ContextWrapper’: 1,

’Landroid/content/Context’: 1, ’Landroid/app/ContextImpl’: 1, ’Landroid/app/

Activity’: 1, ’Ljava/io/Writer?’: 1, ’Landroid/support/v4/app/FragmentActivity’:

1}

gov.irs-63.apk

8

ECE 574 Mini-Project 4 Arpad Voros

Source routines:

{’Landroid/content/pm/PackageManager’: 3, ’Landroid/content/Intent’: 3, ’Lorg/apache/

http/HttpResponse’: 1}

Sink routines:

{’Landroid/content/ContextWrapper’: 8, ’Landroid/util/Log’: 32, ’Ljava/io/

ByteArrayOutputStream’: 1}

pedometer.steptracker.calorieburner.stepcounter-48.apk

Source routines:

{’Landroid/content/Intent’: 13, ’Landroid/location/LocationManager’: 2, ’Landroid/os/

Handler’: 5, ’Landroid/app/PendingIntent’: 1, ’Lsteptracker/stepcounter/pedometer/

service/WorkOutService’: 1}

Sink routines:

{’Landroid/os/Handler’: 5, ’Landroid/content/SharedPreferences$Editor?’: 16, ’Landroid/

util/Log’: 178, ’Ljava/io/FileOutputStream’: 12, ’Landroid/content/Context’: 2}

pl.trpaslik.babynoise-172.apk

Source routines:

{’Landroid/app/PendingIntent’: 4, ’Landroid/content/Intent’: 5, ’Landroid/os/Handler’:

1}

Sink routines:

{’Landroid/content/ContextWrapper’: 3, ’Landroid/content/SharedPreferences$Editor?’:
10, ’Landroid/util/Log’: 73, ’Landroidx/fragment/app/FragmentActivity’: 2, ’

Landroid/os/Handler’: 1, ’Ljava/io/ByteArrayOutputStream’: 1}

twitch.angelandroidapps.tracerlightbox-27001.apk

Source routines:

{’Landroid/content/Intent’: 4}

Sink routines:

{’Landroid/content/SharedPreferences$Editor?’: 6, ’Landroid/util/Log’: 26, ’Landroid/

app/Activity’: 2}

9

	Introduction
	High Level Statistics
	Determining Privacy Violations
	Appendix

